Distance to Alpha Centauri in our scale model

If the Sun is a bowling ball and Earth is a small bead 24 meters away, how far away do you think the next nearest star is? Is it across the street? Is it a mile away or a few miles away? Let's do the calculation.

$$
\frac{D_{\text {star }}}{D_{\text {Star }}}=\frac{d_{\text {ball }}}{d_{\text {Sun }}} \quad D_{\text {star }}=\frac{d_{\text {ball }}}{d_{\text {Sun }}} D_{\text {Star }}
$$

We use the same ratio for the ball and Sun to find the distance to Alpha Centauri in our model.

$$
D_{\text {Star }}=4.0 \times 10^{16} \mathrm{~m}
$$

This is the real distance to Alpha Centauri.

$$
D_{\text {star }}=\frac{2.2 \times 10^{-1} \mathrm{~m}}{1.4 \times 10^{9} \mathrm{~m}} 4.0 \times 10^{16} \mathrm{~m}=6.3 \times 10^{6} \mathrm{~m}
$$

We find that the distance to Alpha Centauri in our scale model is over 6 million meters! That is almost four thousand miles, or the distance across the United States.

If you are standing in Corvallis Oregon holding a bead, looking at a bowling ball 24 paces away, the next closest star in that scale is in Miami! That is pretty amazing.

